

D

SON HIGH SCHOOL SUS

Essential Outcomes Chart: What is it we expect students to learn?

Grade:	9-12		ubject: Alg. II	Semester		Team Members:	Gina Atad-Burgess	Winnie Boyle	Nicole Cederquist
		Subje					Luis Morais		
							Wiembers.		
Standard Description		Example Rigor		Prerequisite Skills		Common Assessment	When Taught?	Extension Standards	
What is the essential standardto be learned? Describe in student-friendly vocabulary.		What does proficient student work look like? Provide an example and/or description.		What prior k and/or voc needed for master th	nowledge, skills abulary is/are r a student to is standard?	What assessment(s) will be used to measure student mastery?	When will this standard be taught?	What will we do when students have learned the essential standard(s)?	
Students solve systems of linear equations and inequalities in two and three variables by substitution, elimination and/or graphing.		Given the system of equations a student will be able to determine the most efficient method to solve.		Vocabular inconsiste dependen independe Prerequis rewrite t equations form and intercept	ry: ent, it, and ent. ite skills: he given standard /or slope- form.	Unit 1 FA 1-1	Quarter 1		
Students add, subtract, multiply or divide complex numbers.		Profic able t numbe	cient stud o conjuga ers using o	ent will be te complex any operation.	Vocabular imaginary conjugate number (r imaginary	ry: number, e, complex real and).	Unit 2	Quarter 1	
Students solve and graph quadratic		Profic a dee	cient stud per under	ent will have standing of	Rewrite t quadratic	he equation	Unit 2	Quarter 2	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

Stockton Unified School District

- Chuc					
equations by factoring, completing the square, or using the quadratic formula. Students apply these techniques in solving word problems. They also solve quadratic equations in the complex number system.	projectile motion. For example: An object is launched at 19.6 meters per second (m/s) from a 58.8- meter tall platform. The equation for the object's height s at time t seconds after launch is s(t) = -4.9t2 + 19.6t + 58.8, where s is in meters. When does the object strike the ground?	in Standard Form, substitution, simplify using the quadratic form, graph on a coordinate plane			
, Students add, subtract, multiply & divide polynomials and solve polynomial equations.	Proficient student will be able to find the solutions to the polynomial equations using the variety of theorems. Example: $x^{3} + 9x^{2} + 24x + 20 = 0$	Like terms, distribute, binomial theorem, Pascal's triangle, rational root theorem, Descartes rule of signs	Unit 3	Quarter 2	
Students factor polynomials representing the difference of squares, perfect	Students will be able to recognize the pattern of the sum and difference of two square and cubic expressions and then be	Sum and difference of squares, sum and difference of cubes	Unit 3	Quarter 2	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

square trinomials, and the sum and difference of two cubes.	able to factor and use as a tool to solve. Example: $27x^3 + 125 = 0$				
Students add, subtract, multiply, divide, reduce, and evaluate rational expressions with monomial and polynomial denominators and simplify complicated rational expressions, including those with negative exponents in the denominator.	Proficiently measured when students read a real life work problem, setup the problem and solve. Example: Two hoses work together to fill a pool. It takes 7 hours for the pool to be filled by both hoses. One hose takes 12 hours more than the other. How long does it take for each hose to fill the pool?	Lowest common denominator (LCD), undefined, restriction on the variable, extraneous solutions	Unit 4/5	Quarter 3	
Solve and graph radicals	Example: $2\sqrt{x-1} - \sqrt{26+x} = 0$	Square root, cube root, cross-multiply	Unit 4/5	Quarter 3	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

EDISON HIGH SCHOOL SUS

Students use the nverse relationship between exponents and logarithms to solve problems involving logarithms and exponents.	The bacteria count in a heated swimming pool is 1500 bacteria per cubic centimeter on Monday morning at 8 AM, and the count doubles each day thereafter. What bacteria count can you expect on Wednesday at 8 AM?	Logarithm, common log, natural log,	Unit 6	Quarter 3	
Students use the laws of fractional exponents to solve problems involving exponential growth and decay.	The half-life of caffeine is 5 hours; this means that approximately $\frac{1}{2}$ of the caffeine in the bloodstream is eliminated every 5 hours. Suppose you drink a can of Instant Energy, a 16-ounce energy drink that contains 80 mg of caffeine. Suppose the caffeine in your bloodstream peaks at 80 mg. How much caffeine will remain in your bloodstream	Exponential Growth and Decay	Unit 6	Quarter 3	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

	after 5 hours? 10 hours? 1 hour? 2 hours? Record your answers in the table. Explain how you came up with your answers.				
Students will extend the domain of trigonometric functions using the unit circle, model periodic phenomena with trigonometric	Graph y = sine 2x Students will have to recall specific values on the unit circle. For example: cosine 60°, tan 135°	Sine, cosine, tangent, secant , cosecant, cotangent, period, shift graph up, down, left or right	Unit 7	Quarter 4	
functions . Students will derive					
and use formulas for the sum and the nth term of arithmetic and geometric sequence and series. Students will derive formulas for the infinite geometric series.	In a store display there are 29 cans on the bottom row, if the top row has 3 cans, how many cans are there total? There are eight rows of cans.	Arithmetic series and sequence, infinite and finite, geometric series and sequence, summation, recursive formula, Fibonacci sequence	Unit 8	Quarter 4	
Students use the		Probability sample	Unit 9	Quarter 4	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

EDISON HIGH SCHOOL Home of the Vikings definition of Example: space, outcome, independent events independent and You have 6 books in your and the rules for backpack. Three are dependent events novels, two are non-fiction addition, multiplication, and and one is a poetry book. Today you grab one book complementation to solve for probabilities from the backpack of particular events in without looking and return finite sample spaces. it later. Tomorrow you do the same thing. a) What is the probability that you grab a novel both days? Example: A student made the following observations about Students use the the weather in his definition of hometown. On 30% of the Conditional conditional probability, finite days, the sky was mostly Unit 9 Quarter 4 probability to solve clear. During the mostly sample space for probabilities in clear days, it rained 5% of finite sample spaces. the time. During the cloudy days it rained 34% of the time.

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.

EDISON HIGH SCHOOL SUS

	Use a tree diagram to find the probability that a day will start out a) mostly clear and then it will rain b) mostly clear, given that it will rain				
Students compute the variance and the standard deviation of a distribution of data.	Find the mode, median, mean, lower quartile, upper quartile, interquartile range, and population standard deviation for each data set. Senator Age Patrick Leahy 34 Carl Levin 44 Tammy Baldwin 50 John Barrasso 54 Mike Johanns 58 Mark Pryor 39 Rand Paul 47 Barbara Boxer 52 Kay Hagan 55 John Boozman 60 Brian Schatz 40 John Cornyn 50 Claire McCaskill 53 Jerry Moran 56 Jim Risch 65 John Thune 43	Mean, standard deviation, variance, median, mode	Unit 9	Quarter 4	

Mission: Thomas Alva Edison High School will deliver challenging and meaningful instruction within programs that are designed to prepare all students for a variety of post-secondary opportunities.